If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-2t-20=0
a = 2; b = -2; c = -20;
Δ = b2-4ac
Δ = -22-4·2·(-20)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{41}}{2*2}=\frac{2-2\sqrt{41}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{41}}{2*2}=\frac{2+2\sqrt{41}}{4} $
| 12x-24=180,x | | 14p+2=17p+20 | | -(-x-2)-3x=-x+4 | | 5p-8p=-12-p | | -2s+19=-3s | | 2/7(y−1)−33/7=−5 | | -2(y+7)+9=-19 | | 0.5+1n=8 | | -9=-7+x/7 | | -3-4y=-17-3y | | -5x=62 | | 127=2x+217 | | 4s-25=191 | | 3(4+x)-x=4+2x | | 27(y−1)−337=−527(y−1)−337=−5 | | 9t-6=7t+9+3 | | x+1/10=2 | | 5x-26=2x+1=43 | | 9t−6=7t+9+3 | | 2x+9=4x+9+2x | | -9c-14c-18=-19c+14 | | 4(7-4x)-6(1+7x)=-36 | | 2x+9=4x+9−2x | | 10-20f=-19f-7 | | x+9=4x+9−2x | | -6v+2(v-3)=2 | | -2y=-10-y | | -15+10r=18-18+9r | | 2x+9=4x+5−2x | | -10+17w=19w | | -2x-2(2+2x)=-4-6x | | -110=-4n-5(-6n-4) |